

Index

Market demands

MasterFlow 9400 – Product parameters

Application method and prototype application

>> Features - Advantages - Benefits

Market demands

- New generation of wind turbines more powerful with ever growing hub heights
- Ever higher loads acting on the foundations, requiring superior designs
- More rapid assembly of the towers, aiming for the lowest levellized cost of energy (LCoE)
- Superior workability in a wide temperature range
 - Long working time in warm conditions
 - Rapid hardening even at cold temperatures
- Certified materials, complying with the regulations of the different countries
- Durable foundations
 - Maintenance free installations
 - Excellent fatigue resistance

How to meet the market demands?

Cost optimized foundation installation

- Reducing time for grouting works: reduce mixing operations, big bags instead of 25 kg bags, pumping instead of pouring
- Optimum use of weather windows: applications in cold and warm conditions
- Durable foundations: superior design using superior grouts

Improved risk management

- Faster assembly of tower reducing the risk for early age defects
- Easier material installation: minimizing failures on site
- Improved quality of works and better Quality Assurance: on site Quality Control, intense Factory Production Control (FPC), confirmation of material quality from different production sites
- Certified product: independently tested and validated/certified by expert or recognized body
- Installation by specialist grouting contractors e.g. BASF LC's

New material especially developed for compatibility with the newest generation of onshore wind turbines

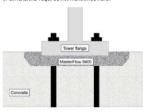
We create chemistry

MasterFlow 9400

Ultra-high strength, cement based grout for onshore wind turbine installations

PRODUCT DESCRIPTION

MasterFlow 9400 is a shrinkage compensated, cement based grout which when mixed with water, produces a homogeneous, flowable and pumpable grout with exceptionally high early and final strength and modulus. The product exhibits increased fatigue. Latest best binder packing models and applied nanotechnology produces a grout with superior technical performance, exceptional rheological properties, and uniquely, extended open times.


FIELDS OF APPLICATION

MasterFlow 9400 has been especially formulated for:

- . Grouting of wind turbine installations, that are installed using pre-stressing techniques e.g. base plate grouting of onshore wind turbines
 Installations where excellent fatigue resistance is
- required

 Onshore turbines where ultra-high final strengths are
- required
 Grouting in a wide temperature range.
- Anchoring anchor bolts of wind turbine towers All void filling from 25mm to 300mm (under tower flange) where high strength, high modulus, high ductility is important

Contact the Technical Department of your local BASE Construction Chemicals office regarding any application or dimensions required not mer

FEATURES AND BENEFITS

- Ultra-high compressive strength: above highest class of EN206, i.e. > C100/116
- Ultra high modulus for exceptional stiffening
- Quick return to service and removal of temporary sup-ports due to high early strength build-up. ≥ 50 MPa @ 24hrs at 20 °C
- No segregation or bleeding to ensure consistent final physical performance and to prevent pump blockages.
- Extended not life of > 2 hours
- Can be pumped into complex areas or areas inaccessible to conventional grouting methods
- Dust reduced for ease of handling
- Cement based

APPLICATION METHOD

MasterFlow 9400 has been especially formulated for use in specific applications. As such MasterFlow 9400 should be installed by experienced fully trained

Full application procedures are available on request.

Mixing:
Do not add cement, sand or other materials that affect the properties of this quality-controlled product. Mix full bags Use one or more mixers (forced action pan mixers are ad-

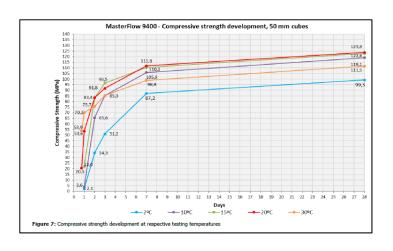
vised) to permit mixing and placing operations to proceed simultaneously without interruption.
Mix with potable water only. Put most of the water required in the mixer and add slowly the grout material. Mix until a homogeneous mortar (3 to 4 minutes), add the remaining water and continue mixing for at least another 2 minutes until the required fluid or flowable consistency is obtained

We create chemistry

MasterFlow 9400

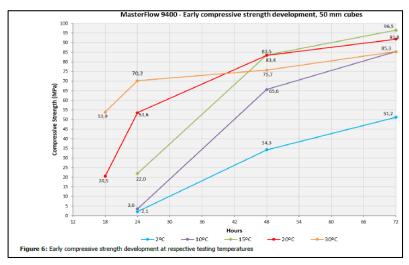
Ultra-high strength, cement based grout for onshore wind turbine installations

TE CHNICAL DATA	Unit	Values		
Density of mixture (0 in 1999-2)	g/cm²	Approx. 2.4		
Mixing water demand	litres	Approx. 1.75 / 25 kg powder at 20 °C (Reperding on temperature: 6.2 kg 3%)		
Pot life ofmixed material	hours	≥3		
Setting time	hours	≤7		
Air content (EN 1015-7)	n n	≤4		
Application temperature (substrate and material):	°C	From +2 to +35		
Application thickness	mm	25 - 300		
Mechanical properties:			181	77
Compressive strength (40 x 40 x 160 mm prisms - EN 12150) - ater 1 day - ater 7 days - ater 28 days	N/mm*	20 °C ≥ 50 ≥ 100 ≥ 120	30°C ≥70 ≥95 ≥110	2°C ≥ 3 ≥ 75 ≥ 95
Characteristic compressive strength – 28 days (150 x 300mm cylinders – Bil 12360-3)	N/mm²	117		
Flexural strength (+0 x +0 x 160mm prisms - Bit 196-1)	N/mm*	≥ 13		
Static modulus of elasticity (Ex 13+12)	GPa	Approx. 48		
Poisson ratio		0.18		
Capillary water absorption (B) (305)	kg/m².h-as	≤0.05		
Drying shrinkage (EN 12517-4)	mm/m	≤0.3		
Crack resistance - Coutinho-ring		no cracking after 180 days		
Adhesion strength to concrete (BI 1542)	N/mm*	≥2		
Pull-out strength of rebar (## 1820) displacement at 76k N load	mm	≤0.6		
Installation / Additional information				
Maximum grain size	mm	4		
Mixing time	minutes	Approximately 5		
Mixertype		e.g. pan mixer		
Application method		One continuous pour, from one side only		
Fire resistance (EN 12801-1)	dass	A1 (fl)		


Independent testing – Quality assessment

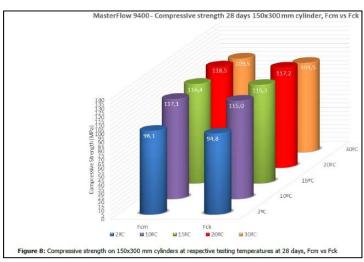
- Excellent workability at wide temperature range
 - Potlife ≥ 180 minutes at elevated temperatures
 - Potlife ≥ 240 minutes at 20°C or below
- >> Low porosity
 - Air content < 4 %</p>
 - Wet density of approx. 2400 kg/m³

- High early and final compressive strength
 - ≥ 50 MPa after 24 h at 20°C
 - ≥ C100/115 (which is the highest strength class in EN206)
 - Characteristic strength: 117 MPa (cylinders)



Independent testing – Quality assessment

High early strength

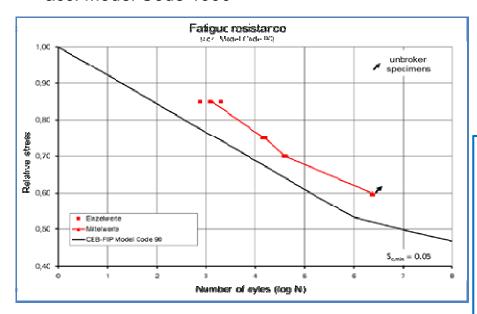


>> High final strength

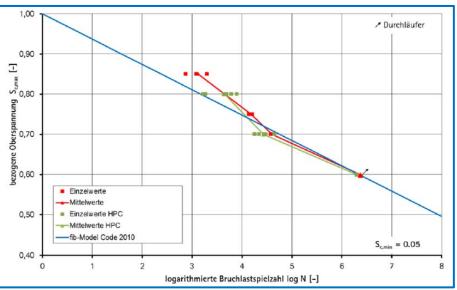
• $f_{\rm ck}$ vs. $f_{\rm cm}$ for cylinders

Table 4.2: Test results of compressive strength on 150/300 mm cylinders

Test		Test method	Test temperature					
			2ºC	10°C	15°C	20°C	30°C	
Compressive	Compressive strength 28d (MPa)	f _{cm}	EN 12390-3	98,1	117,1	116,4	118,5	109,5
_		fak,cyl	150x300 mm cylinder	94,8	115,0	115,3	117,2	104,5



Independent testing – Quality assessment



>> Excellent fatigue resistance

acc. Model Code 1990

acc. Model Code 2010

Application method and Prototype application

Mechanical mixing and placing

- Mixing with forced action pan mixers
- Pumping with worm or piston pumps

MasterFlow 9400 available in

- 25 kg bags
- 500 kg big bags

Large volume applications

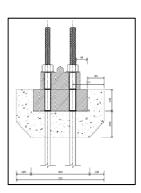
- Preferably using Putzmeister P715 or similar
- Using 300 to 500 liter mixers and big bags

>> Reduced number of mixes

- Reduced QC frequency while ensuring constant quality
- Lower material loss

>> Watch points e.g.

- Concrete surface preparation
- Free standing water
- Protection of pre-stressing bolts
- Adequate curing

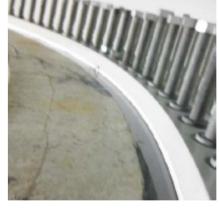


- >> First application using MasterFlow 9400
 - Gamesa prototype: Bremerhaven, March 2017
 - Turbine type: Adwen, 8 MW
 - Installation by BASF LC Azul
 - 4 tons of MasterFlow 9400
 - Intensive quality control on site
 - Compressive strength under jobsite conditions (150 x 300 mm cylinders)
 - After 39 h: 63.4 MPa
 - After 45 h: 66.7 MPa
 - After 64 h: 78.8 MPa
 - After 28 d: 115.8 MPa

- >> First application using MasterFlow 9400
 - Impressions © Azul

- First application using MasterFlow 9400
 - Impressions © Azul





- >> First application using MasterFlow 9400
 - Impressions © Azul

Features – Advantages - Benefits

eatures	Advantages	Benefits		
Grouting larger volumes in shorter period	Faster grouting worksShorter weather windows	Reduction of overall installation costOptimized assembly time		
Rapid strength development	Installation in short weather windowsInstallation in cold conditionsReduced risk of early age damage	Cost and time savingDurable and secure foundation		
Material available in 500 kg big bags	Fewer individual mixes, minimizing failures on siteMore focused quality control	Improved quality assuranceLower cost for grouting works		
Applicable from +2 to +35°C	Long working time in warm conditionsHigh early strength even in cold weather	Optimized assembly timeLittle to no weather downtime		
High final strength	 Resists higher loads from ever growing turbines Can be considered for smaller flange designs 	Optimized / Lower cost of energyFurther design optimization possible		
High fatigue resistance	- Resistant to dynamic loads	Excellent durabilityMaintenance free installation		
Independently validated by external laboratories	Certified qualityFull material and process control	Improved risk managementSecure wind turbine installation		

A prefect match of the market demands

High fatigue resistance

Absorbing dynamic loads

Universal

Designed for use with majority of turbine types

Excellent durability

Guaranteed longterm electricity production

High early strength

Allows earlier pre-stressing of the anchor bolts

Secure installation

Application by BASF Licensed Contractors

Proven high quality

Evaluated by Gamesa and external laboratories

We create chemistry